
Chapter 9

Automating Feature Engineering in
Supervised Learning

Udayan Khurana

IBM Research

9.1 Introduction . 116
9.1.1 Challenges in Performing Feature Engineering 117

9.2 Terminology and Problem Definition . 119
9.3 A Few Simple Approaches . 120
9.4 Hierarchical Exploration of Feature Transformations 121

9.4.1 Transformation Graph . 122
9.4.2 Transformation Graph Exploration . 123

9.5 Learning Optimal Traversal Policy . 125
9.5.1 Feature Exploration through Reinforcement Learning . . 127

9.6 Finding E↵ective Features without Model Training 129
9.6.1 Learning to Predict Useful Transformations 131

9.7 Miscellenious . 133
9.7.1 Other Related Work . 133
9.7.2 Research Opportunities . 134
9.7.3 Resources . 134

Abstract

The process of predictive modeling requires extensive feature en-

gineering. It often involves the transformation of given feature space,

typically using mathematical functions, with the objective of reducing

the modeling error for a given target. However, there is no well-defined

basis for performing e↵ective feature engineering. It involves domain

knowledge, intuition, and most of all, a lengthy process of trial and

error. The human attention involved in overseeing this process signifi-

cantly influences the cost of model generation. Moreover, when the data

presented is not well described and labeled, e↵ective manual feature en-

gineering becomes an even more prohibitive task. In this chapter, we

discuss ways to algorithmically tackle the problem of feature engineer-

ing using transformation functions in the context of supervised learning.

115

116 FE

9.1 Introduction

Feature representation plays an important role in the e↵ectiveness of a
supervised learning algorithm. For instance, Figure 9.1 depicts two di↵erent
representations for points belonging to a binary classification dataset. On the
left, the instances corresponding to the two classes appear to be present in
alternating small clusters along a straight line. For most machine learning
algorithms, it is hard to draw a classifier separating the two classes on this
representation. However, if the feature x is replaced by its sine, as seen in
the image on the right, it makes the two classes easily separable. Feature
engineering is that task or process of altering the feature representation of a
predictive modeling problem, in order to better fit a training algorithm. The
sine function is a transformation function used to perform feature engineering.

(a) Original data (b) Engineered data

FIGURE 9.1: Illustration of two representations of a feature.

Consider the problem of modeling the heart diseases of patients based upon
their characteristics such as height, weight, waist, hip, age, gender, amongst
others. While the given features serve as important signals to classify the risk
of a person, more e↵ective measures, such as BMI (body mass index), and
a waist to hip ratio, are actually functions of these base features. To derive
BMI, two transformation functions are used – division and square. Composing
new features using multiple functions and from multiple base features is quite
common. Consider another example of predicting hourly biking rental count 1

in Figure 9.2. The given features lead to a weak prediction model. However,
the addition of several derived features dramatically decreases modeling er-
ror. The new features are derived using well known mathematical functions
such as log, reciprocal, and statistical transformations such as zscore. Of-

1
Kaggle bike sharing: https://www.kaggle.com/c/bike-sharing-demand

Automating Feature Engineering in Supervised Learning 117

(a) Original features and target (count).

(b) Additionally engineered features using transformation functions.

FIGURE 9.2: In Kaggle’s biking rental count prediction dataset using Ran-
dom Forest regressor, the addition of new features reduced the Relative Ab-
solute Error from 0.61 to 0.20.

ten, less known domain-specific functions prove to be particularly useful in
deriving meaningful features as well. For instance, spatial aggregation, tempo-
ral windowing, are heavily used in spatial and temporal data, respectively. A
combination of those – spatio-temporal aggregation, can be seen in the problem
of predicting rainfall quantities from atmospheric data. The use of the recent
weather observations at a station, as well as surrounding stations greatly en-
hance the quality of a model for predicting precipitation. Such features might
not be directly available and need aggregation from within the same dataset 2

Feature engineering may be viewed as the addition or removal of features
to a dataset in order to reduce the modeling error. The removal of a subset
of features, called dimensionality reduction or feature selection is a relatively
well studied problem in machine learning [7] [16]. The techniques presented in
this chapter focus on the feature construction aspects while utilizing feature
selection as a black-box. In this chapter, we talk about general frameworks
to automatically perform feature engineering in supervised learning through
a set of transformation functions. The algorithms used in the frameworks
are independent of the actual transformations being applied, and are hence
domain-independent. We being with somewhat simple approaches for automa-
tion, moving on to complex performance-driven, trial and error style algo-
rithms. We then talk about optimizing such an algorithm using reinforcement
learning, concluding with an approach that learns patterns between feature
distributions and e↵ective transformations. First of all, let us talk about what
makes either manual or automated feature engineering challenging.

2
NOAA climate datasets: https://www.ncdc.noaa.gov/cdo-web/datasets

118 FE

9.1.1 Challenges in Performing Feature Engineering

In practice, feature engineering is orchestrated by a data scientist, using
hunch, intuition and domain knowledge. Simultaneously, it involves contin-
uous observation and reaction to the evolution of model performance, in a
manner of trial and error. For instance, upon glancing at the biking rental
prediction dataset described previously, a data scientist might think of dis-
covering seasonal or daily (day of the week) or hourly patterns. Such insights
are obtained by virtue of some past knowledge, obtained either through per-
sonal experience or an academic expertise. It is natural for humans to argue
that the demand for bike rental has a correlation to the work schedules of
people, as well as some relationship to the weather, and so on. This is a col-
lective example of the data scientist applying hunch, intuition, and domain
expertise. Now, all of the proposed patterns do not end up being true or useful
in model building. The person conducting the model building exercise would
actually try the di↵erent options (either independently, or in a certain combi-
nations) by adding new features obtained through transformation functions,
followed by training and evaluation. Based on which model trials provide the
best performance, the data scientist would deem the corresponding new fea-
tures useful, and vice-versa. This process is an example of trial and error. As
a result of this process, feature engineering for supervised learning is often
time-consuming, and is also prone to bias and error. Due to this inherent
dependence on human decision making, it is colloquially referred to as “an
art/science” 3 4, making it non-trivial to automate. Figure 9.4 illustrates an
abstract feature engineering process centered around a data scientist.

The automation of FE is challenging computationally, as well as in terms of
decision-making. First, the number of possible features that can be constructed
is unbounded; the transformations can be composed and applied recursively to
features generated by previous transformations. In order to confirm whether a
new feature provides value, it requires training and validation of a new model
upon including the feature. It is an expensive step and infeasible to perform
with respect to each newly constructed feature. In the examples discussed pre-
viously, we witnessed the diversity of functions and possible composition of
functions to yield the most useful features. The immense plurality of options
available makes it infeasible in practice to try out all options computation-
ally. Consider a scenario with merely t = 10 transformation functions and
f = 10 base features; if the transforms are allowed to be applied up to a
depth, d = 5, the total number of options are, f ⇥ td+1, which is greater than
a million choices. If these choices were all evaluated through training and test-
ing, it would take infeasibly large amount of time even for a relatively small
dataset. Secondly, feature engineering involves complex decision making, that

3
http://www.datasciencecentral.com/profiles/blogs/feature-engineering-tips-for-data-

scientists
4
https://codesachin.wordpress.com/2016/06/25/non-mathematical-feature-engineering-

techniques-for-data-science/

Automating Feature Engineering in Supervised Learning 119

is based on a variety of factors. Some examples are, prioritization of transfor-
mations based on the performance with the given dataset or even based on
past experience; or, whether to explore di↵erent transformations or exploit the
combinations of the ones that have shown promise thus far on this dataset,
and so on. It is non-trivial to articulate the notions or set of rules that are
the basis of such decisions. Hence, it is also non-trivial to write programs to
perform the same task.

In this chapter, we take a closer look at the automation of the tasks de-
scribed above for feature engineering in supervised learning using transforma-
tion functions. We specifically look at the strategies that automate the trial
and error methodology, and those that try to learn patterns of association
between features and e↵ective transforms from past experience.

9.2 Terminology and Problem Definition

We are given a predictive modeling task consisting of (1) a set of feature
vectors, F = {f1, f2 . . . fm}; (2) a target vector, y. The nature of y – categori-
cal or continuous, describes whether it is a classification or regression problem,
respectively. Considering a suitable learning algorithm L, that is applicable in
the context of given y, and a measure of performance, m. We use Am

L (F, y) to
signify the performance of a the model constructed on given data with using
the algorithm L through the performance measure m. An example of L is
logistic regression for classification and an example of m is average F1-score.

Now consider a set of k transformation functions at our disposal, T =
{t1, t2 . . . tk}. The application of a unary transformation, ti, can be represented
as, fout = ti(fin), where fin, fout 2 Rn, are features of the same dimension.
Similar notation extends to binary and k-ary transformations. A variation
of the transformations is written with capital letters, such as T1, T2 . . . Tk.
These are applied on a set of features, F , instead of individual features. They
symbolize a separate application of the corresponding function t on each input
f ✓ F , such that t(f) is a legal and valid feature. Also, for Fo = T (Fi), Fo

includes all the newly generated features besides the original features from Fi.
For instance, a Log transformation applied to a set of ten numerical features,
F , will produce ten new output features, fo = log(fi), 8fi 2 F . This extends
to k-ary functions, which work on k input features. The entire (open) set of
features derived directly or recursively from from F using T is denoted by F̂T .

A ‘+’ operator on two feature sets (associated with the same target y) is
a union of the two feature sets, Fo = F1+F2 = F1[F2, preserving row order.
Note that all operations specified on a feature set , T (F), can exchangeably
be written for a corresponding dataset, D = hF, yi, as, T (D), where it is
implied that the operation is applied on the corresponding feature set. Also,
for a binary, such as sum, Do = D1 + D2, it is implied that the target is

120 FE

common across the operands and the result. Transformations on feature sets
add features or keep the set unchanged; on the other hand, a feature selection
operator removes features. However, it can be written in the same algebraic
notation as set transformations, such as T2(FS1(T1(D0))) or T2.FS1.T1(D0).

The goal of feature engineering is stated as follows. Given a set of features,
F , and target, y, and a set of transformations, T – find a set of features,
F ⇤ = F1 [F2, where F1 ✓ F (original) and F2 ⇢ F̂T (derived), to maximize
the modeling accuracy for a given algorithm, L and measure, m.

F ⇤ = argmax
F1,F2

Am
L (F1 [F2, y) (9.1)

9.3 A Few Simple Approaches

One way of constructing new features is to simply apply all transforma-
tions to the given data and sum all the resulting datasets. This leads to the
generation of a large number of features, a few of which might be useful with
respect to the given target. However, training a model over such large feature
set is computationally ine�cient and also leads to overfitting. It is possible
to reduce the number of features through a feature selector, retaining only a
relevant subset of features. This process is illustrated in Figure 9.3(a). This
technique is easy to implement and and e↵ective in finding features that can
be generated from a single layer of transformations on the given features.
However, it lacks the capability to generate features from the composition of
di↵erent transformations, often limiting the scope of the feature space it can
discover. Note that its not feasible to run this method recursively because of
the magnitude of feature expansion. The feature subset selection algorithms
can be a performance bottleneck because of their super-linear complexity in
the number of features. Note that this technique doesn’t explicitly involve
training and evaluations; however, they may be performed within the feature
selection step. This approach is suggested as a part of Data Science Machine
(DSM) [10] and OneButton Machine [15]. We refer to this as the expansion-
reduction approach.

A contrasting approach to above is to generate one new feature at a time
followed by training and evaluation to decide if the new feature is worth keep-
ing or not. While this method is more scalable that the expansion-reduction
approach, it is also slower because it involves model trainings and evaluations,
over the entire space of features that can be generated. In practice, this method
is also only feasible without deep compositions of transforms because of the
expensive nature of exploration. ExploreKit [11] describes one such method,
where a greedy heuristic logic for feature priortization is used. We will call this
category as the evolution-centric approach. It is illustrated in Figure 9.3(b).

Automating Feature Engineering in Supervised Learning 121

D0={f1,f2...fn; y}

T1 T2 Tk-1
Tk

T1(f1), T1(f2), ...T1(fn), Tk(f1), Tk(f2), ...Tk(fn)

Feature Selection

T1(f2), ..., T3(f4), Tk(f1), ...Tk(fn)

(a) Expansion-reduction.

D0={f1,f2...fn; y}

F={current set}

T2T1 Tk

All Candidate
Features

Rank and Select
Top Feature

Train on
{F+fnew ;y } and

validate

Add fnew if
valuable

fnew

(b) Evolution-centric.

FIGURE 9.3: Two basic methods for feature engineering.

The two contrasting approaches discussed in the previous section pose
their own unique performance challenges. The expansion-reduction method
has scalability problems due to the dependence on a feature subset selec-
tion module running for a large number of generated features. Whereas the
evolution-centric approach is fairly time consuming due to the training and
evaluation with respect to each new feature. In a way, the two approaches are
the opposite of each other and go to di↵erent extremes, which also cause each
of them to be ine�cient in its own way. Recall the example of BMI which is
derived through a composition of two basic transformation functions (square
and division) on two measured quantities. Either of the two approaches are
unlikely to discover BMI. In the next section, we will explore a middle-path,
where the newly generated features are batched into groups by applying set
transformations on entire datasets.

9.4 Hierarchical Exploration of Feature Transformations

So far we have discussed two algorithmic approaches to feature engineering.
In summary, expansion-reduction works by generating a large number of new
features, followed by pruning the undesired ones. On the other hand, the
evolution-centric method evaluates the addition of one feature at a time. The
two approaches stand in contrast to each other in the quantity and timing
of generation of new features. Both face performance bottlenecks because of
the extremities of their approaches. Additionally, the given approaches do not
clearly embrace the composition of transforms. Composition is essential for the
discovery of complex relationships. In this section, we discuss an approach that

122 FE

overcomes some of these limitations through batching of new feature generation
and evaluation. It also performs a hierarchical composition of transforms in a
performance driven manner.

The batching is performed per transformation. At each step, one trans-
formation is applied to a dataset (recall the set level transformations with
capital letters), generating a set of new features. At each step, the resulting
new dataset is evaluated for accuracy. This is performed recursively, forming
a hierarchical structure. The batching of feature generation per transforma-
tion is scalable and e�cient. It also provides an abstraction for measuring
the e↵ectiveness of each transformation on the data. The di↵erence in model
accuracy upon applying a transformation is averaged over all instances of its
application for the given problem until that moment. Those performance num-
bers are then used to guide the exploration process – to make the decision
of which transformation to apply next, to which version of the dataset. The
hierarchical organization is a directed acyclic graph (DAG), known as a Trans-
formation Graph[13]. It is a general framework for performance based feature
engineering. The approaches discussed before this can be expressed as specific
formulations of this approach. Further in this section, we formally define the
anatomy of the transformation graph, followed by strategies to explore one.

9.4.1 Transformation Graph

A Transformation Graph, G, for a given dataset, D0, and a finite set of
transformations, T , is a directed acyclic graph in which: each node corre-
sponds to a either D0 or a dataset derived from D0 using a transformation
path. Hence, every node’s dataset contains the same target and row count
as D. The nodes are divided into three categories: (a) The start or the root
node,D0 corresponding to the given dataset; (b) Hierarchical nodes,Di, where
i > 0, which have one incoming parent node Dj , j > i, and the connecting
edge from Dj to Di corresponds to a transformation T 2 T (including feature
selection), i.e., Dj = T (Di). The direction of an edge represents the applica-
tion of the transformation from source to a target dataset or node; (c) Sum
nodes, D+

i,j = Di+Dj , a result of a dataset sum such that i 6= j. Height (h) of
the transformation graph is the maximum unweighted distance between the
root and any other node. The operator ✓(G) signifies all nodes of graph G.
Also, �(Di, Dj) signifies the transformation T , such that its application on Di

created Dj as its child. A transformation graph is illustrated in Figure 9.4.
The best known solution through a transformation graph is the node with the
greatest accuracy: argmaxDi

A(Di). A complete transformation graph always
contain a global solution to the problem.

Any complete transformation graph is unbounded for a non-empty trans-
formation set. A constrained (with bounded height, h) but complete transfor-
mation graph for t transformations contains th+1 � 2 hierarchical nodes, and
(th+1�1)⇥(th+1�2)

2 sum nodes. It can be seen that for even a height bounded
tree with a modest number of transformations, the verification of accuracies

Automating Feature Engineering in Supervised Learning 123

D0

D1 D2 D3

D4 D5 D9
D10 D11

D12

log

square
sum

sum
square

log

log square
sum

D4,10 =D4+D10

D5,3 =D5+D3

D8

FS1

D6 D7

D13

FS1

log

square

FIGURE 9.4: Example of a Transformation Graph, a directed acyclic graph.
The start node D0 corresponds to the given dataset. The hierarchical nodes
are circular and the sum nodes are rectangular. Here we can see three trans-
formations: log, sum, and square, as well as a feature selection operator FS1.

across the tree is combinatorially large. Therefore, we adopt a performance
guided exploration strategy to explore only a tiny subset of the graph which
is most likely to contain the required solution, avoiding other nodes. The al-
gorithm works under a budget constraint.

9.4.2 Transformation Graph Exploration

Exhaustive exploration of a transformation graph is not an option, given
its massive potential size. For instance, with 20 transformations and a height =
5, the complete graph contains about 3.2 million nodes; an exhaustive search
would imply as many model training and testing iterations. On the other
hand, there is no known property that allows us to deterministically verify
the optimal solution in a subset of the trials. Hence, the focus of this work is
to find a performance driven exploration policy or strategy, which maximizes
expected gain in accuracy in a limited time budget.

Algorithm 1 General Transformation Graph Exploration

Input: Dataset D0, Budget Bmax

1: Initialize G0 with root D0

2: while i < Bmax do
3: N ✓(Gi)
4: bratio i

Bmax

5: n⇤, t⇤ argmaxn,t@n08t=�(n,n0) R(Gi, n, t, bratio)
6: Gi+i Apply t⇤ to n⇤ in Gi

7: i i+ 1
8: end while

Output: argmax
D

A(✓(Gi))

124 FE

Algorithm 1 outlines a general methodology for exploration. At each step,
an estimated reward from each possible move, R(Gi, n, t,

i
Bmax

), is used to
rank the options of actions available at each given state of the transformation
graph Gi, 8i 2 [0, Bmax), where Bmax is the total allocated budget in number
of steps. The budget can be considered in terms of any quantity that is mono-
tonically increasing in i, such as time elapsed; for simplicity, we work with
“number of steps”. Note that the algorithm allows for plugging-in of di↵erent
exploration strategies, through the definition of the function R(. . .). Any such
definition is a function of four basic parameters: (1) current global state of the
graph, (2) which transform is being characterized for application, (3) which
node is it being considered to apply on, and (4) how much budget is remain-
ing. The following is a non-exhaustive list of influential factors (attributes of
one or more of the four parameters) in designing an exploration strategy:

1. Node n’s Accuracy: Higher accuracy of a node incentives further explo-
ration from that node, compared to others.

2. Transformation, t’s average or max accuracy improvement until Gi.

3. Number of times transform t has already been used in the path from
root node to n. A high or even non-zero number weakens the case for
an application of t on n.

4. Accuracy gain for node n (from its parent) and the accuracy gain for
n’s parent. This tests whether n’s cumulative gains are recent or not.

5. Node Depth: A higher value is considered as a sign of relative complexity
of the transformation sequence.

6. The fraction of budget exhausted till Gi.

7. Ratio of feature counts in n to the original dataset: This indicates how
bloated n is, in comparison to the original dataset.

8. Is the transformation a feature selector (reduces feature count)?

9. Whether the dataset contain (a) numerical features; or (b) date-time
features; or (c) string features?

The exploration strategy essentially translates to the design of the reward
estimation function, R(. . .). Some of the handcrafted graph traversal strate-
gies by Cognito [14] are describes as follows. In a depth-first strategy, the
emphasis is on exploring further from the node with the highest accuracy,
until saturation or decrease in accuracy is noticed. It is best utilized for find-
ing consolidating on an already found-solution in a somewhat limited budget.
However, it can get stuck in local, deep areas of the graph without exploring
other simpler choices. In other words, it lacks the exploration aspect and such
a policy may take a long time to stumble upon a simple transformation with

Automating Feature Engineering in Supervised Learning 125

high reward. A breadth-first strategy is primarily focused on exploring the
less explored subtrees of the hierarchical portion of the transformation graph.
Other factors are secondary influencers – such as transformation performance,
parent node’s accuracy and child node’s prospective accuracy. This strategy
is good for discovering single (or a small sequence) of highly rewarding trans-
forms. However, it performs poorly in consolidating benefits into a single chain
of of large number of transforms. A global strategy is derived from a mix of the
depth and breadth oriented policies. It works with first exploring the breadth,
followed by a more concentrated exploration of promising depths based upon
the initial phase. Figure 9.4.2 illustrates the breadth-first, depth-first and one
of the RL-based strategies (Section 9.5) for OpenML 618 dataset (Bmax = 20,
hmax = 5), with sum-nodes disabled (for visual clarity). In general, it is hard
to manually encode all rules that best capture the optimal intent for di↵erent
situations – at di↵erent values of remaining budget, average performance of
di↵erent transformations and their combinations for a given dataset, and so
on. In the next section, we will discuss how to empirically optimize that.

9.5 Learning Optimal Traversal Policy

In the previous section, we discussed an algorithmic approach for a
performance-based exploration for feature engineering. It was based upon the
exploration of a hierarchical set-up of the transformation functions in the form
of a transformation graph (a directed acyclic graph). We discussed di↵erent
heuristics to form exploration strategies based on an understanding of the
manual trial and error process. While it helps achieve good results for fea-
ture engineering without human intervention, there is a considerable scope
for improving the strategy beyond the handcrafted rules.

In this section, we describe a method to improve the exploration strategy
from experience. Instead of relying on “human experts” to encode heuristics,
we rely on empirical observations and perform reinforcement learning to op-
timize the strategy. Consider a feature engineering agent that is continuously
monitoring the impact of each transformation applied (call it action) on a
given transformation graph (state) and resulting improvement in performance
(reward). The goal of reinforcement learning here is for the agent to learn
a strategy that the optimizes the final or cumulative reward (A⇤ � A(D0))
for a given dataset in a specified time budget. Similar to the handcrafted
strategies discussed previously, the learned strategy can also be thought of as
an action-utility function to satisfy the expected reward function, R(. . .) in
Algorithm 1. This simply means the association of any action with a scalar
utility or expected reward value. Reinforcement learning is helpful in learn-
ing such an action-utility function based upon observing immediate rewards
from actions, in the process of optimizing the final or cumulative reward. A

126 FE

(a) Bredth-first exploration.

(b) Depth-first exploration.

(c) RL-based exploration.

FIGURE 9.5: Illustration of di↵erent exploration policies on dataset:
https://www.openml.org/d/618 dataset. In Bmax = 20 iteration limit, RL
and DF both find the best performance of 0.58 (1 � Rel.Abs.Error), while
BF finds only 0.54. RL takes 11 iterations, while DF takes 20 iterations.

tutorial on reinforcement learning is beyond the scope of this chapter, but we
encourage the interested reader to refer to Sutton and Barto [26] for a general
understanding of the topic. In a nutshell, reinforcement learning is an area
of machine learning concerned with training an agent to perform optimal ac-
tions in an environment in order to maximize a notion of cumulative reward.
It relies on a reward signal for each action taken in order to guide the agent’s
behavior, which is di↵erent than the supervised learning paradigm, where we
are given the ground truth to train the system. Here, we specifically discuss
a particular instance of Q-learning with function approximation method as

Automating Feature Engineering in Supervised Learning 127

discussed by Khurana et al. [13]. Q-value learning is a particular kind of re-
inforcement learning that is useful in the absence of an explicit model of the
environment, which in this case translates to the behavior of the learning al-
gorithm. An approximation function is suitable due to the large number of
states (recall, millions of nodes in a graph with small depth) for which it is
infeasible to learn state-action transitions explicitly. This style of work, where
machine learning is aided by the use of other machine learning techniques, is
referred to as “learning to learn” or meta-learning.

9.5.1 Feature Exploration through Reinforcement Learning

Consider the graph exploration process as a Markov Decision Process
(MDP) where the state at step i is a combination of two components: (a)
transformation graph after i node additions, Gi (G0 consists of the root node
corresponding to the given dataset. Gi contains i nodes); (b) the remaining
budge at step i, i.e., bratio = i

Bmax
. Let the entire set of states be S. On the

other hand, an action at step i is a pair of existing tree node and transfor-
mation that hasn’t already been applied to it, i.e., < n, t > where n 2 ✓(Gt),
t 2 T and @n 2 Gi8�(n, n0) = t. Let the entire set of actions be C. A policy,
⇧ : S ! C, determines which action is taken given a state. Note that the ob-
jective here is to learn the optimal policy (exploration strategy) by learning
the action-value function, which is elaborated later.

The described formulation uniquely identifies each state. Considering the
“remaining budget” as factor in the state of the MDP helps address the run-
time exploration versus exploitation trade-o↵ for a given dataset. Note that
this runtime explore/exploit trade-o↵ is not identical to the commonly referred
trade-o↵ in RL training in context of selecting actions to balance reward and
not getting stuck in a local optimum.

At step i, the occurrence of an action results in a new node, ni, and hence
a new dataset on which a model is trained and tested, and its accuracy A(ni)
is obtained. To each step, we attribute an immediate scalar reward:

ri = max
n02✓(Gi+1)

A(n0)� max
n2✓(Gi)

A(n)

with r0 = 0, by definition. The cumulative reward over time from state si
onwards is defined as:

R(si) =
BmaxX

j=0

�i.ri+j

where � 2 [0, 1) is a discount factor, which prioritizes early rewards over the
later ones.

We use Q-learning [28] with function approximation to learn the action-
value Q-function. For each state, s 2 S and action, c 2 C, Q-function with
respect to policy ⇧ is defined as:

Q(s, c) = r(s, c) + �R⇧(�(s, c))

128 FE

where � : S ⇥ C ! S is a hypothetical transition function, and R⇧(s) is the
cumulative reward following state s. The optimal policy is achieved as:

⇧⇤(s) = argmax
c

[Q(s, c)] (9.2)

However, given the size of S, it is infeasible to learn Q-function directly.
Instead, a linear approximation the Q-function is used as follows:

Q(s, c) = wc.f(s) (9.3)

where wc is a weight vector for action c and f(s) = f(g, n, t, b) is a vector
of the state characteristics described in the previous section and the remaining
budget ratio. Therefore, we approximate the Q-functions with linear combina-
tions of the characteristics of a state of the MDP. Note that, in the heuristic
rule-based strategies described in Section 9.4.2, we used a subset of these
state characteristics, in a self-conceived manner. However, in the ML based
approach here, we select the entire set of characteristics and empirically de-
termine the appropriate weights of those characteristics (for di↵erent actions).
Hence, this approach generalizes the handcrafted approaches.

The update rule for wc is as follows:

wcj wcj + ↵.(rj + �.max
n0,t0

Q(g0, c0)�Q(g, c)).f(g, b) (9.4)

where g0 is the state of the graph at step j + 1, and ↵ is the learning rate
parameter. The proof follows from [9].

A variation of the linear approximation where the coe�cient vector w is
independent of the action c, is as follows:

Q(s, c) = w.f(s) (9.5)

This method reduces the space of coe�cients to be learnt by a factor of
c, and makes it faster to learn the weights. It is important to note that the
Q-function in this case is still not independent of the action c, as one of the
factors in f(s) or f(g, n, t, b) is actually the average immediate reward for the
transform for the present dataset. Hence, Equation 9.5 based approximation
still distinguishes between various actions (t) based on their performance in
the transformation graph exploration so far; however, it does not learn a
bias for di↵erent transformations in general and based on the feature types
(factor #9). We refer to this type of strategy as RL2. In our experiments
RL2 e�ciency is somewhat inferior to the strategy to the strategy learned
with Equation 9.3, which we refer to as RL1. However, RL2 can be learned
from fewer examples compared to RL1, due to the former’s smaller space
of parameters. In Figure 9.6(a), we see that on an average for 10 datasets,
the RL-based strategies are 4-8 times more e�cient than any handcrafted
strategy (breadth-first, depth-first and global as described in [14]), in finding
the optimal dataset in a given graph with 6 transformations and bounded
height, hmax = 4.

Automating Feature Engineering in Supervised Learning 129

Handcrafted

Learned

(a) Comparing di↵erent exploration

policies by an average of nodes explored

(in a constrained graph) to find the op-

timal solution.

(b) Performance of RL1 exploration on

various datasets with varying hmax.

hmax = 1 is the base accuracy.

FIGURE 9.6: Evaluating the performance for hierarchical exploration.

For training, Khurana at al. [13] used 48 datasets (not overlapping with
test datasets) to select training examples using di↵erent values for maximum
budget, Bmax 2 {25, 50, 75, 100, 150, 200, 300, 500} with each dataset, in a
random order. The discount factor, � = 0.99, and learning rate parameter,
↵ = 0.05. The weight vectors, wc or w, each of size 12, were initialized with
1’s. The training example steps were drawn randomly with the probability
✏ = 0.15 and the current policy with probability 1� ✏.

9.6 Finding E↵ective Features without Model Training

So far, we have discussed approaches that rely on evaluation of generated
features either directly through model construction and testing, or indirectly
through feature selection. These tasks are computationally expensive. In this
section, we shift the discussion to a paradigm without model construction
and evaluation. Consider a binary classification example where one of the
features is plotted in Figure 9.7(a). The high degree of overlap between the
two classes suggests that this feature is not quite helpful for classification.
Upon transformation with a frequency function, the distinction between points
from the two classes is more prominent, as can be seen on the right. Hence,
without model training and evaluation, we can suggest that the particular
transformation has generated additional value for classification with respect
to the base feature. Generally, in the presence of a set of other features F , we
can only say that a feature f2 is more suitable than f1, , if,

Pr(y|f2, F) > Pr(y|f2, F) (9.6)

Determining the validity of Inequation 9.6 is as good as training two models

130 FE

(a) Feature x1 values. (b) Feature frequency(x1) values.

FIGURE 9.7: Scatterplots juxtaposing values of an original and a trans-
formed feature for several data instances (“dataframe index”). The trans-
formed feature separates the two classes (‘x’ / ‘+’) better than the original.

with feature sets f1 + F and f2 + F , respectively. In practice however, it is
still viable to consider only the independent impact of a derived features with
respect to its base feature. This is because amongst a vast pool of features that
can be derived, only a small fraction ever up being beneficial. For a base feature
f1, a transformation, t, and a derived feature, t(f1), the following condition
makes t(f1) a strong candidate to add value to the problem of predicting y:

Pr(y|t(f1), f1) > Pr(y|f1) (9.7)

A more strict condition than Equation 9.7, but one that is easier to evaluate
through proxy functions is the following:

Pr(y|t(f1)) > Pr(y|f1) (9.8)

Consider the case of binary classification. Measuring the overlap of two
sets of a feature belonging to di↵erent classes provides a reasonable measure
of e↵ectiveness of that feature itself in building a classifier. Lesser the overlap,
the better. The degree of lack of overlap can be measured by the magnitude of
divergence in the probability distribution functions (PDFs) of the two classes,
say !(c1, c2). If the application of a transformation reduces !, it is a positive
signal to embrace the new feature. One such measure is the symmetric-KL-
divergence. It is described below for continuous distributions of the two classes,
c1(x) and c2(x) for feature, f . There also exists a corresponding expression
for discrete distributions.

!f
KL(c1, c2) =

Z 1

�1
(c1(x)� c2(x)) log

c1(x)

c2(x)
dx (9.9)

If !f2 > !f1 , where f2 = t(f1) for a base feature f1 – we can infer that

Automating Feature Engineering in Supervised Learning 131

f2 = t(f1) is a potentially valuable instance of transformation and f2 should
be retained. It is important to note two important points regarding the choice
of the measure. First, metrics such as mutual information are not suitable. For
our purpose, even identically shaped distributions without a significant over-
lap are good cases and mutual information does not convey that di↵erence.
Secondly, the required measure need not strictly be a metric. This concept
extends well to multi-class problems. In case of regression, a measure of corre-
lation between the feature and the target mirrors the objective appropriately.

This approach is e�cient because the measures of similarity between PDFs
can be approximated more e�ciently than training models on the entire
data. However, it still needs an enumeration of various feature-transformation
choices. While the computed PDF for a feature can be cached (specifically
for base features), creating the PDF for each new feature (|T | ⇥ |F |), and
computing ! is still quite a bit of work.

9.6.1 Learning to Predict Useful Transformations

We now discuss an approach to predict ! using supervised machine learn-
ing instead of computing it. It is based on learning the patterns between the
distributions of feature vectors, the target vector and corresponding utility
of transformations. Once learned, those patterns are employed for predicting
useful transformations for any previously unseen dataset. Its prominent ad-
vantage is that it is not dependent on the expensive task of model training
and evaluation. It does not even depend on finding the improvement in diver-
gence of PDFs of di↵erent classes upon applying a transformation. Instead, it
predicts the improvement based on a trained model. Hence, it is much faster
at runtime compared to any other method discussed so far. It can also be
combined with any of the previously described approaches to prioritize their
transformation application in accordance with the predictions. This style of
making transformation predictions for a dataset based upon past experience
is somewhat analogous to the hunch or intuition used by a data scientist in
manual feature engineering.

Nargesian et al.[20] train a set of Multi-Layer Perceptrons (MLP), one for
each transformation t 2 T . For every given feature-target pair, an MLP learns
the impact of its corresponding transformation on the specified prediction
task. It generalizes this knowledge across all training examples. A training
instance consists of an alternative representation of the feature’s PDF as input;
the output is a binary value – whether the transformation is useful for accuracy
improvement of the model or not. Hundreds of thousands of training examples
are used, thanks to the vast array of open dataset repositories for supervised
learning problems. Notice that the training data for the supervised meta-
learning problem is generated automatically.

Let Rf be the alternate representation for a feature f . Recommending a
transformation for f involves applying all |T | MLPs on Rf . If the highest
confidence score obtained from the classifiers that returned a positive output

132 FE

is above a given threshold, the corresponding transformation is recommended
for application on feature f . Let Gk(Rf) be the confidence score of the MLP
corresponding to transformation tk, and � is the threshold for confidence scores
which we determined empirically. LFE recommends the transformation tc, for
feature f , as follows:

c = argmax
k

Gk(Rf)

recommend :

(
tc, if Gc(Rf) > �

none, otherwise
(9.10)

The alternative PDF representation is called a Quantile Sketch Array
(QSA). It represents feature f in a dataset with k classes as follows:

Rf =
h
Q(1)

f ;Q(2)
f ; . . . ;Q(k)

f

i
(9.11)

where Q(i)
f is a fixed-sized representation of values in f that are associated

with class i. QSA uses quantile data sketch [27] to represent feature values as-
sociated with a class label. It is a non-parametric representation that enables
characterizing the feature PDFs. QSA is similar to a cumulative histogram,
where data is summarized into a small number of buckets. Several other ap-
proaches for the alternate representation have been tried and QSA has proved
to be the most e↵ective for this problem [20].

Let Vk be the bag of values in a feature, f , that correspond to label ck and

Q(i)
f is the quantile sketch of Vk. First, these values are scaled to a predefined

range [lb, ub]. To generate Q(i)
f , all values in Vk are bucketing into a set of bins.

Given a fixed number of bins, r, the range [lb, ub] is partitioned into r disjoint
bins of uniform width w = ub�lb

r . The range of the bin bj (j 2 {0, 1, . . . r�1})
is [lb + j ⇤ w, lb + (j + 1) ⇤ w). P (bj) signifies the number of feature values

bucketed in bj . And, I(bj) =
P (bj)P

0m<r P (bm) is the normalized value of P (bj)

across all bins.
The training samples for transformation MLP classifiers are generated us-

ing several classification datasets. For each dataset, each numerical features,
f , is considered and a model is trained using a learning algorithm, L. For
each MLP, the corresponding transform t is applied to f and a new model
is trained with f and t(f). If the transformation leads to an improvement
above a certain threshold, AL({f, t(f)}, y)�AL({f}, y) > �, Rf is considered
a positive training example; otherwise a negative training example.

For a k-class problem, and while using b bins for each quantile data sketch,
Rf is a vector of size k⇥ b. For an MLP with one hidden layer having h units,
the probability of transformation t being a useful transformation or not for
feature f is computed as:

[pt is useful(f), pt is not useful(f)] =

�2(b(2) +W(2)(�1(b(1) +W(1)[Q(1)
f ; . . . ;Q(k)

f])))
(9.12)

Automating Feature Engineering in Supervised Learning 133

Here, W(1) and W(2) are weight matrices, b(1) and b(1) are bias vectors. �1

and �2 are softmax and rectified linear unit (ReLU) functions, respectively.
Stochastic Gradient Descent is used to train transformation MLPs. Overfitting
should be prevented using regularization and drop-out [24].

At runtime, when a new dataset is presented, computing the QSA and
scoring on the MLPs is computationally cheap. Compared to evaluation-based
techniques with a large turn around time, prediction-based techniques can give
quick insights to a data scientist. Additionally, their results can be used as an
initial bias for any of the exploration-based techniques for faster search. The
gains reported by this technique are usually better than expansion-reduction
style of feature engineering [20], but less than a well-tuned transformation
graph exploration system.

9.7 Miscellenious

9.7.1 Other Related Work

The techniques presented in this chapter are representative of the state-
of-the-art for automated feature engineering for predictive modeling. There
is an additional body of valuable work which should also be of interest for
researchers and graduate students working on this topic. We summarize some
of the relevant work in this section.

FICUS [18] performs a beam search over the space of possible features,
constructing new features by applying “constructor functions” (e.g. inserting
an original feature into a composition of transformations). FICUS’s search for
better features is guided by heuristic measures based on information gain in
a decision tree, and other surrogate measures of performance. FICUS is more
general than a number of less recent approaches [21, 1, 29, 19, 8].

Fan et al. [4] propose FCTree uses a decision tree to partition the data using
both original and constructed features as splitting points (nodes in the tree).
Similar to FICUS [18], FCTree uses surrogate tree-based information-theoretic
criteria to guide the search, as opposed to the true prediction performance.
FCTree is capable of generating only simple features, and is not capable of
composing transformations, i.e. it is search in a smaller space than our ap-
proach. They also propose a weight update mechanism that helps identify
good transformations for a dataset, such that they are used more frequently.
FEADIS [3] relies on a combination of random feature generation and feature
selection. It adds constructed features greedily, and as such requires many
expensive performance evaluations.

Certain machine learning methods perform some level of feature engineer-
ing implicitly. A recent survey on the topic appears can be found here [25]. Di-
mensionality reduction methods such as Principal Component Analysis (PCA)

134 FE

and its non-linear variants (Kernel PCA) [6] aim at mapping the input dataset
into a lower-dimensional space with fewer features. Such methods are also
known as embedding methods [25]. Kernel methods [22] such as Support Vec-
tor Machines (SVM) are a class of learning algorithms that use kernel functions
to implicitly map the input feature space into a higher-dimensional space.

9.7.2 Research Opportunities

One interesting direction is to view the problem as a hyper-parameter op-
timization [2]. Each transformation option corresponds to a hyper-parameter
and one searches for the hyper-parameter setting that results in the best im-
provement of predictive performance. For instance, in [23] a genetic algorithm
was used to determine a suitable transformation for a given data set. Sim-
ilarly, in the context of automated ML pipeline configuration (e.g., feature
selection and model), the work presented in [5] employs Bayesian optimiza-
tion to determine a suitable pipeline. While the approach in [23] is limited
to determining single transformations and does not search for a sequence of
transformations, black-box optimization strategies [17] have to our knowledge
not been applied to generate novel features based on compositions. A fertile
area for improvement is to combine di↵erent known methods for feature en-
gineering into one. For instance, using prediction-based techniques to provide
quick insights to exploration-based techniques can boost the overall e�ciency
of the process [12]. Finally, extending the analysis and solutions presented in
Section 9.6 from a single base feature to multiple ones and perform a joint-
probabilistic analysis is valuable.

9.7.3 Resources

Please refer to an online addendum to this chapter on GitHub https:
//github.com/uk2911/FEChapterExtended. It contains resources to auto-
mated feature engineering tools that are described in this chapter. There are
demonstrations on various real datasets, including videos and IPython note-
books. It also contains hints on e�ciently implementing your own feature
engineering program.
Acknowledgement: Thanks to Horst Samulowitz, Fatemeh Nargesian, Elias
Khalil, Deepak Turaga, and Tejaswini Pedapati for joint research on di↵erent
problems which are described in this chapter. Thanks to Biplav Srivastava for
helpful discussions on the process of writing the chapter.

Bibliography

[1] Giulia Bagallo and David Haussler. Boolean feature discovery in empirical
learning. Machine learning, 5(1):71–99, 1990.

[2] James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl.
Algorithms for hyper-parameter optimization. In J. Shawe-Taylor, R. S.
Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 24, pages 2546–2554. Curran
Associates, Inc., 2011.

[3] Ofer Dor and Yoram Reich. Strengthening learning algorithms by feature
discovery. Information Sciences, 2012.

[4] Wei Fan, Erheng Zhong, Jing Peng, Olivier Verscheure, Kun Zhang,
Jiangtao Ren, Rong Yan, and Qiang Yang. Generalized and heuristic-
free feature construction for improved accuracy. pages 629–640, 2010.

[5] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias
Springenberg, Manuel Blum, and Frank Hutter. E�cient and robust
automated machine learning. NIPS, 2015.

[6] Imola K Fodor. A survey of dimension reduction techniques, 2002.

[7] Isabelle Guyon and André Elissee↵. An introduction to variable and
feature selection. Journal of machine learning research, 3(Mar):1157–
1182, 2003.

[8] Yuh-Jyh Hu and Dennis Kibler. Generation of attributes for learning
algorithms. AAAI, 1996.

[9] Marina Irodova and Robert H Sloan. Reinforcement learning and function
approximation. In FLAIRS Conference, pages 455–460, 2005.

[10] James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis:
Towards automating data science endeavors. IEEE Data Science and
Advanced Analytics, pages 1–10, 2015.

[11] Gilad Katz, Eui Chul, Richard Shin, and Dawn Song. Explorekit: Auto-
matic feature generation and selection. In IEEE ICDM, pages 979–984,
2016.

135

136 Bibliography

[12] Udayan Khurana, Fatemeh Nargesian, Horst Samulowitz, Elias Khalil,
and Deepak Turaga. Automating feature engineering. In Artificial Intel-
ligence for Data Science (NIPS workshop), 2016.

[13] Udayan Khurana, Horst Samulowitz, and Deepak Turaga. Feature en-
gineering for predictive modeling using reinforcement learning. arXiv
preprint arXiv:1709.07150, 2017.

[14] Udayan Khurana, Deepak Turaga, Horst Samulowitz, and Srinivasan
Parthasarathy. Cognito: Automated feature engineering for supervised
learning. In IEEE ICDM, 2016.

[15] Hoang Thanh Lam, Johann-Michael Thiebaut, Mathieu Sinn, Bei Chen,
Tiep Mai, and Oznur Alkan. One button machine for automating feature
engineering in relational databases. arXiv preprint arXiv:1706.00327,
2017.

[16] Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Trevino
Robert, Jiliang Tang, and Huan Liu. Feature selection: A data perspec-
tive. arXiv:1601.07996, 2016.

[17] Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and
Ameet Talwalkar. E�cient hyperparameter optimization and infinitely
many armed bandits. CoRR, abs/1603.06560, 2016.

[18] Shaul Markovitch and Dan Rosenstein. Feature generation using general
constructor functions. Machine Learning, 2002.

[19] Christopher J Matheus and Larry A Rendell. Constructive induction on
decision trees. IJCAI, 1989.

[20] Fatemeh Nargesian, Horst Samulowitz, Udayan Khurana, Elias B. Khalil,
and Deepak Turaga. Learning feature engineering for classification. In
Proceedings of the Twenty-Sixth International Joint Conference on Arti-
ficial Intelligence, IJCAI-17, pages 2529–2535, 2017.

[21] Harish Ragavan, Larry Rendell, Michael Shaw, and Antoinette Tessmer.
Complex concept acquisition through directed search and feature caching.
IJCAI, 1993.

[22] John Shawe-Taylor and Nello Cristianini. Kernel methods for pattern
analysis. Cambridge university press, 2004.

[23] Matthew G. Smith and Larry Bull. Feature Construction and Selection
Using Genetic Programming and a Genetic Algorithm, pages 229–237.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[24] Nitish Srivastava, Geo↵rey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning, 15(1):1929–1958, 2014.

Bibliography 137

[25] Dmitry Storcheus, Afshin Rostamizadeh, and Sanjiv Kumar. A survey
of modern questions and challenges in feature extraction. Proceedings of
The 1st International Workshop on Feature Extraction, NIPS, 2015.

[26] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction, volume 1. MIT press Cambridge, 1998.

[27] Lu Wang, Ge Luo, Ke Yi, and Graham Cormode. Quantiles over data
streams: An experimental study. SIGMOD, pages 737–748, 2013.

[28] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learn-
ing, 8(3-4):279–292, 1992.

[29] Der-Shung Yang, Larry Rendell, and G Blix. Fringe-like feature construc-
tion: A comparative study and a unifying scheme. ICML, 1991.

