
Noname manuscript No.
(will be inserted by the editor)

Historical Graph Data Management

Udayan Khurana and Amol Deshpande

the date of receipt and acceptance should be inserted later

Abstract Real world graphs evolve over time, with continuous addition and removal of vertices and edges,
as well as frequent change in their attributes. Some examples of such graphs are – phone-call graphs gen-
erated by telecommunication service providers, message graphs from social networking sites, and mention-
activity graphs formed by Twitter users mentioning one another in their tweets, and so on. For decades,
the work in graph analytics was restricted to a static perspective of the graph. Analysis such as finding
important (central) entities in a network, groups (clusters) of similar entities, observing graph density,
diameter and several other attributes have been well studied in the context of static graph snapshots.
In recent years, however, we have witnessed an increasing abundance of timestamped observational data
describing various types of temporal information networks, including social networks, biological networks,
citation networks, financial transaction networks, communication networks, to name a few. This has fueled
an interest in performing richer analysis of graphs, along a temporal dimension. Analysis of history of a
graph presents fascinating insights into the underlying phenomena that produced the graph. However, the
traditional network data management systems provide inadequate support for such analyses. We present a
summary of recent advances in the field of historical graph data management. They involve, compact stor-
age of large graph histories, efficient retrieval of temporal subgraphs, and effective interfaces for expressing
historical graph queries are essential for enabling temporal graph analytics.

1 Overview

In recent years, several works have designed analytical models that capture network evolution, with a focus
on social networks and the Web [LKF07,KNT10]. Studies analyze how communities evolve [TLZN08], iden-
tifying key individuals, and locating hidden groups in dynamic networks [TBWK07], also characterizing the
complex behavioral patterns of individuals and communities over time [APU09]. Biologists are interested
in discovering historical events leading to a known state of a biological network (e.g., [NK11]). Change
in page rank [BCG10], change in centrality of vertices, path lengths of vertex pairs, etc. [PS11], shortest
paths evolution [RLK+11], and such, provide useful analytical algorithms for changing graphs. Historical
or temporal analyses on graphs span a variety of tasks that vary in the analytical quantity of interest, as
well as the scope of the graph locality and time-duration being analyzed. Figure 1 provides a classification
on those lines and lists a few examples of graph retrieval and analysis tasks. A more exhaustive taxonomy
of temporal tasks is provided by Ahn et al. [APS14].

Typical graph data management systems that are based on static graphs, do not provide sufficient
support for the analytical tasks described above. This is due to a fundamental lack in the modeling of the
change of information. If performed using the conventional graph systems, such tasks become too expen-
sive in storage costs, memory requirements, or execution time, and are often unfriendly or infeasible for an
analyst to even express in the first place. The frequent change of a temporal graph also poses a significant
challenge to algorithm design, because the overwhelming majority of graph algorithms assume static graph
structures. One would have to design special algorithms for each application to accommodate the dynamic

Udayan Khurana
IBM Research AI, TJ Watson Research Center, Yorktown Heights New York NY, USA
E-mail: ukhurana@us.ibm.com

Amol Deshpande
Computer Science Department, University of Maryland, College Park MD, USA
E-mail: amol@cs.umd.edu



2 Udayan Khurana and Amol Deshpande

size

time

node

neighborhood

graph

point interval

Snapshot Multipoint Snapshot

Subgraph versions
community evolution

evolution of graph densityshortest paths

Subgraph

local clustering coefficient

Static vertex Vertex history
vertex connections degree evolution

diameter, density
pagerank
betweenness centrality 

comparing diameter across time

most central node last year

compare local clustering coeff

Which are X's most 
interacted contacts until 1995?

How many citations did 
I have in 2012? 

Whether X or Y has a higher 
knit cluster around them?

Visualize evolution of this 
community of investors.

What is the average number
of friends for a person?

Has the degree of separation increased 
or decreased in the last 1 year?

Fig. 1 A temporal graph can be represented across two different dimensions - time and entity. It lists retrieval tasks
(black), graph operations (red), example queries (magenta) at different granularities of time and entity size [Khu15].

aspects of graphs. To support general-purpose computations, most of the emerging temporal graph systems
adopt a strategy to separate graph updates from graph computation. More specifically, although updates
are continually applied to a temporal graph, graph computation is only performed on a sequence of suc-
cessive static views of the temporal graph. For simplicity, most systems adopt a discretized-time approach,
so that time domain is set of natural numbers, i.e., t ∈ N . As per the terminology of temporal relational
databases, this discussion considers valid time (against transaction time) as the underlying temporal di-
mension for historical analyses. Valid time denotes the time period during which a fact is true with respect
to the real world. Transaction time is the time when a fact is stored in the database. It is worth noting
that there is a related but orthogonal body of work which we do not touch in this chapter. It deals with the
need to do real-time analytics on the streaming data as it is being generated; here the scope of the analysis
typically only includes the latest snapshot or the snapshots from a recent window. The key challenge there
is to be able to deal with the high rate at which the data is often generated.

Broadly speaking, this chapter’s focus is to briefly introduce the reader to the recent advances in
historical graph data management for temporal graph analytics. There are many different types of analyses
that may be of interest. For example, an analyst may wish to study the evolution of well-studied static graph
properties such as centrality measures, density, conductance, etc., over time; or, the search and discovery
of temporal patterns, where the events that constitute the pattern are spread out over time. Comparative
analysis, such as juxtaposition of a statistic over time, or perhaps, computing aggregates such as max
or mean over time, gives another style of knowledge discovery into temporal graphs. Most of all, even a
primitive notion of simply being able to access past states of the graphs and performing simple static graph
analytics, empowers a data scientist with the capacity to perform analysis in arbitrary and unconventional
patterns. Supporting such a diverse set of temporal analytics and querying over large volumes of historical
graph data requires addressing several data management challenges. Specifically, we need techniques for
storing the historical information in a compact manner, while allowing a user to retrieve graph snapshots
as of any time point in the past, or the evolution history of a specific node or a specific neighborhood.
Further the data must be stored and queried in a distributed fashion to handle the increasing scale of the
data. Finally, there is a need for an expressive, high-level, easy-to-use programming framework that will
allow users to specify complex temporal graph analysis tasks. in a data-parallel fashion across a cluster.

2 Storage and Retrieval

Storage of large temporal graphs is challenging and requires careful design. An effective storage system
for temporal graphs has a twofold objective. First, the storage should be compact such that the invariant
information across multiple graph versions is not stored multiple times. Second, it must allow for effi-
cient retrieval of graph primitives such as snapshot(s), temporal range queries of nodes or neighborhoods,
amongst others, as reflected in Figure 1. A straightforward use of static graph datastores can lead to an
explosion in storage requirements, and/or incur high fetch latency times. Consider two basic and extreme



Historical Graph Data Management 3

approaches from conventional storage methods to support snapshot retrieval queries, referred to as the
Copy and Log approaches, respectively [ST99]. While the Copy approach relies on storing new copies of a
snapshot upon every point of change, the log approach relies on storing everything through changes. Their
hybrid is often referred to as the Copy+Log approach. Copy approach is clearly infeasible for frequently
changing graphs because of intractable storage needs; the Log approach, while storing minimal information,
makes it hard work to reconstruct any snapshot or temporal subset of the graph.

2.1 Delta-based Encodings

The use of “deltas”, or graph differences, is a powerful approach to register the changes in a graph over
a period of time. If carefully organized, deltas can provide efficient retrieval at low storage costs. The
DeltaGraph index [KD13], for instance, provides highly efficient retrieval of individual snapshots of the
historical graph for specific time instances. It organizes the historical graph data in a hierarchical data
structure, whose lowest level corresponds to the snapshots of the network over time, and whose interior
nodes correspond to graphs constructed by “combining” the lower level snapshots in some fashion; the
interior nodes are typically not valid snapshots as of any specific time point. Neither the lowest-level graph
snapshots nor the graphs corresponding to the interior nodes are actually stored explicitly. Instead, for
each edge, a delta, i.e., the difference between the two graphs corresponding to its endpoints, is computed,
and these deltas are explicitly stored. In addition, the graph corresponding to the root is explicitly stored.
Given those, any specific snapshot can be constructed by traversing any path from the root to the node
corresponding to the snapshot in the index, and by appropriately combining the information present in the
deltas. Use of different “combining” functions leads to a different point in the performance-storage trade-off,
with intersection being the most natural such function. This index structure is especially effective with
multi-snapshot retrieval queries, which are expected to be common in temporal analysis, as it can share
the computation and retrieval of deltas across the multiple snapshots. While it is efficient at snapshot
retrieval, is not suitable for fetching graph primitives such as histories of nodes or neighborhoods over
specified periods of time. However, Temporal Graph Index (TGI) [KD16], an extension of DeltaGraph
which partitions deltas in so-called micro-deltas, and uses chaining of related microdeltas across horizontal
nodes in the DeltaGraph, allows retrieval of different temporal graph primitives including neighborhood
versions, node histories, and graph snapshots. Such a micro-delta based design is great for distributed
storage and parallel retrieval on a cloud. This allows efficient retrieval of not only entire snapshots, but
also of individual neighborhoods or temporal histories of individual neighborhoods.

2.2 Storing by Time Locality

Another powerful approach to store and process temporal graphs is based on time-locality. Chronos [HML+14]
targets time-range graph analytics, requiring computation on the sequence of static snapshots of a temporal
graph within a time range. An example is, the analysis of change in each vertex’s PageRank for a given time
range. Obviously, the most straightforward approach of applying computation on each snapshot separately
is too expensive. Chronos achieves efficiency by exploiting locality of temporal graphs. It also leverages
the time locality to store temporal graphs on disk in a compact way. The layout is organized in snapshot
groups. A snapshot group Gt1,t2 contains the state of G in the time range [t1, t2], by including a checkpoint
of the snapshot of G at t1 followed by all the updates made till t2. The snapshot group is physically stored
as edge files and vertex files in time-locality fashion. For example, an edge file begins with an index to each
vertex in the snapshot group, followed by segments of vertex data. The segment of a vertex, in turn, first
contains a set of edges associated with the vertex at the start time of the snapshot group, followed by all
the edge updates to the vertex. A link structure is further introduced to link edge updates related to the
same vertex/edge, so that the state of a vertex/edge at a given time t can be efficiently constructed.

2.3 Indexing using Multiversion Arrays

LLAMA [MMMS15] presents an approach where an evolving graph is modeled as a time series of graph
snapshots, where each batch of incremental updates produces a new graph snapshot. The graph storage
is read-optimized, while the update buffer is write-optimized. It augments the compact read-only CSR
representation to support mutability and persistence. Specifically, a graph is represented by a single vertex
table, and multiple edge tables, one per snapshot. The vertex table is organized as a large multi-versioned
array (LLAMA) that uses a software copy-on-write technique for snapshotting, and the record of each
vertex v in the vertex table maintains the necessary information to track v’s adjacency list from the edge



4 Udayan Khurana and Amol Deshpande

tables across snapshots. The array of records is partitioned into equal-sized data pages, and an indirection
array is constructed that contains pointers to the data pages. The indirection array fits in L3 cache. To
create a new snapshot, the indirection array is copied, with those references to out-dated pages replaced
by those to the newly modified pages. Thus, we do not need to copy unmodified pages across snapshots.
LAMA stores 16 consecutive snapshots of the vertex table in each file, so that disk space can be easily
reclaimed from deleted snapshots. The edge table for a snapshot i is organized as a fixed-length array that
stores adjacency list fragments consecutively, where each adjacency list fragment contains the edges of a
vertex added in snapshot i. An adjacency list fragment of vertex v also stores a continuation record, which
points to the next fragment for v, or null if there are no more edges. To support edge deletion, each edge
table maintains a deletion vector, which is an array that encodes in which snapshot an edge was deleted.

3 Analytical Frameworks

Running graph analytics requires dealing with two main aspects – the runtime system components and
the interfaces to express the analytical task. Let us discuss the essentials of both.

3.1 Runtime Environment Aspects

In-Memory Graph Layouts. Like the storage and indexing of temporal graphs, dealing with temporal
redundancy is important in the in-memory data structures on which analytics are executed. For example,
when running a graph algorithm or evaluating a metric on various snapshots of a graph, it might be
prohibitively expensive to store all the snapshots in the memory at the same time. However, most graph
libraries do require plain isolated version of each graph. The most common solution to this problem is to
use an overlaying of multiple versions on one another, and using bitmaps and an additional lookup table
to establish the validity of a graph component to one or more versions. This reduces any redundancy of
nodes, edges or attributes that occur across multiple versions, yet obtaining access to each snapshot as a
static graph through a simple interface. GraphPool [KD13] and Chronos [HML+14] amongst others use
variations of this technique. In addition, Chronos also employs such a structure for locality-aware batch
scheduling (LABS) of graph computation. More specifically, LABS batches the processing of a vertex across
all the snapshots, as well as the information propagation to a neighboring vertex for all the snapshots.

Parallelism. Temporal graph analytics presents opportunities for parallelization in two different ways.
First, evaluating a property across multiple snapshots can be easily parallelized, unless . Second, several
static graph computation operations such as Pagerank, can be run in parallel themselves. Determining the
optimum level of parallelism for an analytical task can be complex and depends on the exact computation
steps, nature of graph data and the resources available. TGAF [KD16] provides parallelism by express-
ing all temporal graphs as RDDs of time evolving nodes or subgraphs and letting the underlying Spark
infrastructure plan the parallelism. Leveraging Spark parallelism provides abundant benefits, along with
simplicity of design. However, it there are occasions on which certain tasks can be customized for better
results. A major drawback with TGAF is the lack of space saving obtained through overlaid structures
such as GraphPool. LABS and Llama show effective locality-based multi-core parallelism.

Incremental Computation. Time-range graph analysis can benefits from incremental or shared com-
putation. First, for iterative algorithms such as PageRank, if the target time-range contains a sequence of
N snapshots S0 to SN−1, the result computed on S0 can be used to initialize the solution for S1, and so
on until SN−1. This reduces the number of iterations needed to converge an algorithm, but also serializes
the computations because of the newly created dependence. Chronos utilizes a variation of this principle
to effectively perform incremental computation.

3.2 Analytical Interfaces

There are mainly two kinds of historical graph analytical interfaces. The first one, a programmatic interface
involves an abstraction of a temporal graph and various operations that can be performed on it, along
with calls to several static (sub-)graph routines. The second kind are the visual exploration tools which
are usually targeted to more specific types of analytic options but provide an easier means to express
the task through GUI interfaces and provide meaningful visualization of the results. One example of a
programmatic interface is TGAF [KD16], which abstracts the temporal graph through two main primitives
– Set of temporal nodes (SoN), and Set of temporal subgraphs (SoTS). The entire temporal graph or any
part of it may be expressed as one of these primitives. A SoN is best illustrated as a three dimensional array



Historical Graph Data Management 5

along the axes of time, nodes and attributes. The system also defines graph manipulation operations such
as timeslicing, selection, filtering; compute operators such as node compute map, temporal node compute
map, node compute delta, amongst others; it also provides analytical operators such as compare, evolution,
and such. A rich set of operators enables the expression of complex analytical operations. We omit further
details here and refer the interested reader to [KD16] and [Khu15].

Visualization is an effective means for exploring and analyzing a temporal graph. Following is a rather
brief and non-exhaustive reference to techniques and tools that have demonstrated such capabilities. Using
visualization of different snapshots, Toyoda et al. [TK05] study events like appearance of pages, relationship
between different pages for a historical dataset of Web archive. NetEvViz [KNC+11] extends NodeXL
(a popular graph analysis tool), to study evolving networks. It uses an edge color coding scheme for
comparative study of network growth. Ahn et al. [ATMS+11] focus on different states of graph components
in order to visualize temporal dynamics of a social network. Alternate representations to node-link diagrams
have been proposed in order to study temporal nature of social networks, such as TimeMatrix [YEL10]
that uses a matrix based visualization to better capture temporal aggregations and overlays. A temporal
evolution analysis technique based on capturing visual consistency across snapshots can be seen in the
work of Xu et al. [XKHI11]. A survey by Beck et al. [BBDW14] lists several other approaches for visual
analysis of dynamic graphs.

References

APS14. Jae-wook Ahn, Catherine Plaisant, and Ben Shneiderman. A task taxonomy for network evolution
analysis. IEEE transactions on visualization and computer graphics, 20(3):365–376, 2014.

APU09. Sitaram Asur, Srinivasan Parthasarathy, and Duygu Ucar. An event-based framework for characterizing
the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data
(TKDD), 3(4):16, 2009.

ATMS+11. Jae-wook Ahn, Meirav Taieb-Maimon, Awalin Sopan, Catherine Plaisant, and Ben Shneiderman. Tem-
poral visualization of social network dynamics: prototypes for nation of neighbors. Social computing,
behavioral-cultural modeling and prediction, pages 309–316, 2011.

BBDW14. Fabian Beck, Michael Burch, Stephan Diehl, and Daniel Weiskopf. The state of the art in visualizing
dynamic graphs. EuroVis STAR, 2, 2014.

BCG10. Bahman Bahmani, Abdur Chowdhury, and Ashish Goel. Fast incremental and personalized pagerank.
Proceedings of the International Conference on Very Large Data Bases (VLDB), 2010.

HML+14. Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong Zhou, Vijayan Prabhakaran,
Wenguang Chen, and Enhong Chen. Chronos: a graph engine for temporal graph analysis. In Proceedings
of the Ninth European Conference on Computer Systems, page 1. ACM, 2014.

KD13. Udayan Khurana and Amol Deshpande. Efficient snapshot retrieval over historical graph data. In
Proceedings of IEEE International Conference on Data Engineering, pages 997–1008, 2013.

KD16. Udayan Khurana and Amol Deshpande. Storing and analyzing historical graph data at scale. In
Proceedings of International Conference on Extending Database Technology, pages 65–76, 2016.

Khu15. Udayan Khurana. Historical Graph Data Management. PhD thesis, University of Maryland, 2015.
KNC+11. Udayan Khurana, Viet-An Nguyen, Hsueh-Chien Cheng, Jae-wook Ahn, Xi Chen, and Ben Shneider-

man. Visual analysis of temporal trends in social networks using edge color coding and metric timelines.
In Proceedings of the IEEE Third Inernational Conference on Social Computing, pages 549–554, 2011.

KNT10. Ravi Kumar, Jasmine Novak, and Andrew Tomkins. Structure and evolution of online social networks.
In Link mining: models, algorithms, and applications, pages 337–357. Springer, 2010.

LKF07. Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densification and shrinking
diameters. ACM Transactions on Knowledge Discovery from Data (TKDD), 1(1):2, 2007.

MMMS15. Peter Macko, Virendra J Marathe, Daniel W Margo, and Margo I Seltzer. Llama: Efficient graph
analytics using large multiversioned arrays. In Proceedings of IEEE International Conference on Data
Engineering, pages 363–374, 2015.

NK11. Saket Navlakha and Carl Kingsford. Network archaeology: uncovering ancient networks from present-
day interactions. PLoS Computational Biology, 7(4), 2011.

PS11. Raj Kumar Pan and Jari Saramäki. Path lengths, correlations, and centrality in temporal networks.
Physical Review E, 2011.

RLK+11. Chenghui Ren, Eric Lo, Ben Kao, Xinjie Zhu, and Reynold Cheng. On querying historial evolving graph
sequences. In Proceedings of the International Conference on Very Large Data Bases (VLDB), 2011.

ST99. Betty Salzberg and Vassilis J Tsotras. Comparison of access methods for time-evolving data. ACM
Computing Surveys (CSUR), 31(2):158–221, 1999.

TBWK07. Chayant Tantipathananandh, Tanya Berger-Wolf, and David Kempe. A framework for community
identification in dynamic social networks. In Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 717–726, 2007.

TK05. Masashi Toyoda and Masaru Kitsuregawa. A system for visualizing and analyzing the evolution of the
web with a time series of graphs. In Proceedings of the sixteenth ACM conference on Hypertext and
hypermedia, pages 151–160, 2005.

TLZN08. Lei Tang, Huan Liu, Jianping Zhang, and Zohreh Nazeri. Community evolution in dynamic multi-mode
networks. In Proceedings of the 14th ACM SIGKDD International conference on Knowledge discovery
and data mining, pages 677–685. ACM, 2008.

XKHI11. Kevin S Xu, Mark Kliger, and Alfred O Hero III. Visualizing the temporal evolution of dynamic
networks. stress (X), 1:2, 2011.

YEL10. Ji Soo Yi, Niklas Elmqvist, and Seungyoon Lee. Timematrix: Analyzing temporal social networks using
interactive matrix-based visualizations. Intl. Journal of Human–Computer Interaction, 26(11-12):1031–
1051, 2010.


	Overview
	Storage and Retrieval
	Analytical Frameworks

