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Abstract

The efficacy of a supervised learning model depends on the predictive ability of
the underlying features. A crucial means of improving the model quality is to add
new features with additional predictive power. This is often performed by domain
specialists or data scientists. It is a complex and time-consuming task because
the domain expert needs to identify data sources for new features, join them, and
finally select the features that are relevant to the prediction. We present a new
system called KAFE (Knowledge Aided Feature Engineering), that helps build
strong predictive models by automatically performing feature enhancement. It
utilizes structured knowledge present on the web, such as knowledge graphs, web
tables, etc., and figures out additional information that can improve the accuracy of
predictive models. In this paper, we describe the key aspects of the system such as
feature inference and selection, along with relevant data indexing for numerical
and categorical features.

1 Introduction

In recent years, we have witnessed proliferation of predictive modeling applications in various
domains. The cornerstone of building effective models is successful feature engineering. It is a
lengthy and time-consuming process that relies on the domain knowledge of the data scientist, and
often accounts for up to 80% of the time involved in building predictive models2. For instance, when
building a predictive model of sales at a store, seasonal holidays such as Christmas are important to
encode as features, because they account for surges in sales. Similarly, weather can dampen store
sales at a brick and mortar store, and so could represent a key feature for predicting sales.

Often, the domain expertise needed for the addition of such features is not available or is prohibitively
expensive to obtain. Moreover, even when it is available, the addition of features is mostly a human-
driven process. It is tedious due to the guesswork, coding, and involves a lengthy trial and error
process. However, lack of investment in feature engineering impacts the quality of models and
consequently, results in a lack of confidence in the use of such models in the real world. Automation
of these time-consuming aspects of a machine learning cycle is therefore an area of significant
importance and recent interest. Different approaches to perform automated feature engineering have
been proposed recently and are being used in the industry3. Recent works on feature engineering
or enhancement [7, 9, 6, 11] have proposed different methods for transforming the feature space
using mathematical functions in order to morph the data into a more suitable feature set. Similarly,
Deep Learning performs feature engineering implicitly by embedding features based on learned
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functional mappings. However, most of these techniques are oblivious to the semantic understanding
of the features in data. Moreover, they do not consider additional information available from various
external sources. Our focus is to fill that gap; specifically, we focus here on the problem of finding
new data sets and semantically informative features relevant to the predictive model at hand, and
adding those that have predictive value automatically into the model. We believe, this is the first
work that considers addition of features having semantic explainable relationships with the input data
and the techniques presented in this paper provide a valuable addition to the problem of automated
feature engineering.

The web contains a plethora of expert knowledge in the form of encyclopedic data, books, blogs,
dialogs, and more. A part of this information exists as structured knowledge, in the form of knowl-
edge graphs, ontologies, web tables amongst other sources. Given the recent progress of building
knowledge graphs for various domains to capture domain knowledge, devising a system to leverage
this high quality structured information is of utmost importance. This paper presents a system called
KAFE that aims to utilize this information to improve classification and regression problems.

Given the massive scale of information present on the web coupled with heterogeneity of information
available from different sources, automatic identification of relevant knowledge for predictive mod-
eling is not trivial. This work presents novel techniques to identify potential matches of the given
data set with structured information on the web and quickly identifies the smallest set of features that
help to boost the quality of a classifier. Apart from the novel techniques, this paper also attempts
to familiarize the reader with usability the KAFE system. It specifically focuses on providing a
handle to the end-user for better understanding of the performance of different components and the
ability to plug in different techniques to monitor model performance. One of the major challenges
of building our system was to deal with the information available from various data sources like
DBpedia, Wikidata and other web tables (more than 20 million) in a unified manner. To this end, we
present a Semantic Feature Index in KAFE, that provides the dual benefit of achieving fast lookup
speed (less than 1 millisecond to identify one entity match) and knowledge inference from millions
of data sources are some of the notable strengths of KAFE.

2 Related Work

Feature engineering has traditionally been a manual process. Recently, there has been some work to
automate it. For instance, Cognito [9, 10] performs trial and error through reinforcement learning to
find suitable “transformation functions” that generate new features from base features. Katz et al. [7]
rely on a rather exhaustive algorithm that greedily evaluates many choices for feature transformations.
LFE [11] learns patterns of associations between features, transforms and target from historical data
to predict transforms for new data. All of these methods do not add new information that is external
to the given data. A detailed account of such automated feature engineering techniques can be found
here [8].

Friedman et al. [2] recursively generate new features using a knowledge base for text classification.
FeGeLOD [14] extracts features from Linked Open Data via queries. These approaches, however, fail
to thoroughly explore the available information from external web sources, and apply it to general
machine learning problems. In contrast, our system automatically infers and selects novel and useful
features from external sources such as web tables to boost the predictive performance. The problem
of assigning semantic types to columns of tabular data is closely related to the objective of feature
enhancement. For categorical column values, most approaches annotate them by exact matching
to KB instances, classes, and properties. Systems such as ColNet [1] and Sherlock [4] exploit and
extract contextual semantics from the tabular data using neural networks. Compared to textual data,
numerical data is much harder to annotate. Most previous works develop a background KB from
sources like Wikidata and then apply approaches such as transformation [13] and k-nearest neighbors
search [12] to collect candidate semantic labels. These approaches are complimentary to the ideas
described in this paper, and can enhance our pipeline in the data integration step. An earlier version
of KAFE that worked only on categorical attributes can be seen in [3].

3 System Description
Figure 1 illustrates an overview of our system. The main highlight of KAFE is that it provides
a simplified access to the structured knowledge present in various knowledge graphs, as well as
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Figure 1: KAFE System Architecture

web sources along with an ability for the end-user to plug in their proprietary data. KAFE consists
of state-of-the-art techniques to process the input data set, generate insightful visualizations and
automatically identify the minimal set of features that provide maximum gain to model performance.
KAFE provides transparency to inspect the internals of various algorithms. It consists of the following
key components:

(a) Data set statistics (b) Data-DBpedia Mapping

Figure 2: The Python front-end helps to easily load a data set, explore the different features and
pre-process. The library is easy to invoke and it quickly shows statistics of the number of matches
found between the cells of a column with the external knowledge graph. This snapshot shows the
identified hits for Zoo data set (https://archive.ics.uci.edu/ml/datasets/Zoo).

• Knowledge lookup: This component iterates over different cells of the input and queries the index
built on top of DBpedia, Wikidata and a collection of around 25 million web tables. The lookup
component tries to identify an exact match initially and if no matches are found, it queries the
index for fuzzy matches. KAFE leverages these hits to identify the semantic type of the column
by voting, which is helpful for the broader understanding of the column and is useful for cell-level
disambiguation in the next phase. KAFE employs sampling strategies to optimize the number of cells
queries to the index and achieve better efficiency.
• Entity Disambiguation: The knowledge lookup phase generates different candidate hits for each
cell in the table. In some cases, we find multiple hits. For example, the animal ‘Duck’ maps to
three different entities (i) An animal (http://dbpedia.org/page/Duck), (ii) A City in North
Carolina (https://www.wikidata.org/wiki/Q2724064) and (iii) A Cartoon character (http:
//dbpedia.org/page/Donald_Duck). KAFE disambiguates such scenarios by leveraging the
semantic type of the column to construct a precise mapping between the various values in our
data set to the closest knowledge graph entities and relationships. After identifying this mapping,
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KAFE explores the attributes of the mapped entities in knowledge graphs (or tables) to identify
different candidate features. We observed that a number of DBpedia properties have multiple attribute
values (For example, the animal ‘duck’ has more than four values for property ‘type’: Animal, Bird,
Eukaryote, Species, etc. http://dbpedia.org/page/Duck).
• Feature Selection and Modeling: Once a list of candidate features is identified, KAFE performs
eliminates features with few distinct values, low information gain and low correlation with the target
class. The subset of features are then used to train a model. The features used to train are further
pruned based on their importance values. KAFE provides the flexibility to employ other techniques
to identify a small set of useful features and train a predictive model.
• Indexing: Given that the scale of the data available from various knowledge sources is in the
millions, providing a quick access to this information was one of the key challenges for our problem.
We constructed an index on top of DBpedia, Wikidata data set and a dump of structured data (present
in form of tables collected from various sources). In total we consider a collection of around 15
million entities. This index helps in quick lookup of an entity and examine its attributes. Given the
heterogeneity of information present in various tables, our index constructs a novel homogeneous
representation based on the semantic type of the information present in those data sources. Our index
leverages this homogeneous representation to shortlist columns that can be joined, to speed-up the
knowledge lookup and feature exploration phase.

There are a number of important challenges that need to be addressed to devise an automatic holistic
feature generation pipeline that leverages external knowledge. In this work, we focus on the semantic
mapping of columns that contain numerical data and present various techniques devised to handle
such scenarios.

4 Joins Based on Numerical Attributes

Knowledge lookup on numerical attributes is a difficult problem because numeric values can match
across semantically disparate columns, whereas text tends to be less ambiguous. As an example,
2010 can match to the year that Rafael Nadal won his first US Open, or the monthly salary of some
employee. Identifying the correct mapping for numerical attributes therefore requires a different set
of techniques than mapping for text. To solve this problem, we devise a suite of techniques which are
together helpful to match the different numerical attributes.

• Numerical distribution testing: This approach tries to construct a representation of the
different numerical attributes and performs distribution testing to identify the closest distri-
bution. The numerical values for the column are represented as a fixed length vector, where
the features are determined by statistical properties such as the mean, variance, minimum,
maximum, range and histogram of quantiles. Vectors of column values and knowledge graph
values are then compared for L1 and L2 distances. While this approach of breaking down
numerical attributes into a set of features is not new (e.g., see [5]), KAFE can combine this
the notion of using pivots in the knowledge graph to shortlist the possible column matches
for a numerical column. We describe this notion next.

• Pivot based annotation: We stage the matching process such that textual columns which
are less ambiguous are matched first, and these textual columns are then used as anchors to
severely circumscribe the set of numerical attributes in the knowledge graph that may be
potential matches for the numerical columns. Figure 3 shows this idea using an example. At
this point, the type of Peak has been matched to the knowledge graph type of Mountain and
the entity has been disambiguated to be Allen Crags, a peak in the knowledge graph. The
numerical value of alt is numerically close to the value of elevation, and hence elevation is a
good candidate match for alt.

• Column headers: When possible, we also determine whether column header strings map
directly to properties in the knowledge base, either directly, or through synonyms for
properties using other knowledge bases such as WordNet. For instance, consider the same
dataset in Figure 3, and the column heading ALT. Using WordNet, as shown in Figure 4, this
column heading can be mapped to the semantic property of Elevation. Note that although we
use exact matches in this example, this is only for illustration. In reality we use techniques
like using word embeddings to improve recall.
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Figure 3: Pivot based annotation for numerical columns based on entity matching.

Figure 4: Wordnet to map column headers to knowledge base properties

5 Using KAFE for Predictive Modeling

In this section, we familiarize the reader with the usability of KAFE. It can be used through an
interactive Jupyter notebook4. We will highlight functions to perform the following: (i) analyze
the input data set, (ii) visualize and modify the mapping of entities to external knowledge, feature
generation and selection, (iii) identify the smallest set of features that achieve the best performance.
We will provide five pre-loaded classification and regression data sets for use. The user will go
through the following components, with an option to customize or alter the workflow as desired:

4Video of our system: https://youtu.be/7HbHeNYRh_c
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7/18/2019 KAFE_Demonstration

localhost:8000/notebooks/KAFE_Demonstration.ipynb 3/9

In [6]:

New columns that can be added are: ['owl#differentFrom', 'soundRecording_

label', 'genus', 'synonym', 'kingdom', 'class_label', 'owl#differentFrom_

label', 'activeYearsStartYear', '22-rdf-syntax-ns#type', 'family', 'genus

_label', 'family_label', 'binomialAuthority_label', '22-rdf-syntax-ns#typ

e_label', 'order', 'birthDate', 'phylum', 'background', 'rdf-schema#seeAl

so_label', 'associatedBand', 'phylum_label', 'class', 'conservationStatu

s', 'conservationStatusSystem', 'species_label', 'binomialAuthority', 'rd

f-schema#seeAlso', 'species', 'kingdom_label', 'associatedMusicalArtist_l

abel', 'associatedBand_label', 'order_label', 'associatedMusicalArtist', 

'soundRecording'] 

1   phylum 

2   phylum_label 

3   class 

4   class_label 

5   22-rdf-syntax-ns#type 

6   family_label 

7   synonym 

8   rdf-schema#seeAlso 

9   rdf-schema#seeAlso_label 

10   genus_label 

11   genus 

12   family 

13   conservationStatus 

14   binomialAuthority_label 

15   binomialAuthority 

16   species_label 

17   species 

18   associatedMusicalArtist 

print ("New columns that can be added are:",kg_obj.new_feat_names)

kg_obj.get_candidate_features()

Figure 5: The different features that can be added to the Zoo data set and their correlation with the
target variable.

Figure 6: A summary of the ‘phylum_label’ feature identified, effect on classification accuracy and
the correlation with the target class.

1. Data analysis: We provide the user, a complete handle on the data set by providing functions and
visualization tools to analyze the different features. Our Python notebook allows the user to invoke
any of the built-in functions in combination with our tools. The analysis of correlation and feature
importance between the different features helps identify ineffective features and streamline the search
for relevant domain knowledge that can help boost the classification performance. Figure 2 displays
KAFE’s UI to help facilitate data loading, external knowledge mapping and analysis.

2. Knowledge Index lookup: KAFE provides a one-stop solution to all the data sources including
DBpedia, WikiData and a collection of more than 20 million web tables. It provides different
functions to query a particular entity and explore the different hits identified. Figure 5 shows the
utility of the different features to predict the target class. Figure 6 shows the deeper analysis of the
particular feature, the column statistics, and classification improvements. Figure 7(a) shows a small
subset of the knowledge graph, zoomed into the property of interest along with statistics about the
target variable that is best captured by this property.
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(a) Knowledge Graph snapshot (b) Correlation heat map

Figure 7: The knowledge graph zoomed-in for ‘Phylum’ property of the identified hits along with a
summary of the target class being captured by each value and Correlation heat map between the new
features identified. Highly correlated features are expected to contribute towards similar examples.

3. Inference: This module of KAFE demonstrates the inferred feature and its statistics e.g., cor-
relation with the target variable, number of hits identified and change in accuracy if this feature is
considered in the training phase. The different statistics and interactive visualizations generated by
KAFE help the end user to quickly understand new candidate features, their summary and usefulness.
KAFE exposes functionality for the user to compare the benefit of one feature on top of another by
generating a correlation heat map along with change in accuracy. Figure 7(b) shows the correlation
values between every pair of new features identified.
4. Feature Selection and Model Building: This visualization component displays the accuracy
improvement on considering new features identified from external knowledge sources along with
feature importance. Due to space constraints, we do not show a screen shot of this aspect of our
demonstration.

6 Experiments

We evaluate the end-to-end solution of feature enhancement over real world data sets used for
prediction tasks and evaluate the efficacy of semantically matching numerical columns.

We test KAFE on Zoo Animal Classification data set 5 to test the F-score of a classifier trained with
and without feature enhancement. We observe that the F-score improved from 0.94 to 0.974 with the
help of additional features from DBPedia and Wikipedia. Due to the efficiency of our semantic index,
this feature enhancement pipeline was able to identify all the useful features for Zoo data set in less
than a minute.

To test the different techniques for labelling numerical attributes, we consider a collection of six tables
from T2Dv2 corpus6 and ISWC 2019 challenge 7. The different numerical columns in these tables
referred to Altitude, Country’s population and Area, Floor count and height of tallest buildings of
the world, dimensions of famous lakes around the world, number of passengers flying from different
airports, length of a movie and its year of release and the Zoo data set.

We observe that the simplistic approach of calculating L1 distance shows very poor performance
because the considered statistics over the distributions match with many distributions. The distribution
of country’s population was confused with ‘World Heritage Site ID’ and some other id’s present over
the knowledge graph. The technique of leveraging column headers works well for columns with
well-defined headers. It fails to identify the column containing volume of water in famous lakes
because of noise in column header. Similarly, it did not work for column containing the length of
a movie because the column header consisted of length and DBPedia had a label of runtime. The
pivot based algorithm worked well for the columns which had noisy or no headers but did not work

5https://www.kaggle.com/yunusulucay/zoo-animal-classification-using-ml/output
6http://webdatacommons.org/webtables/goldstandardV2.html
7http://www.cs.ox.ac.uk/isg/challenges/sem-tab/
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for number of passengers flying from different airports. The main reason was the large difference
in values of the knowledge graph and that of the table being considered. It is primarily because of
temporal aspect of the data. Additionally, Wikidata had an attribute named Patronage with multiple
values (one for each year). Current, KAFE does not handle attributes with multiple values. These
techniques did not apply for Zoo data set because of binary encoding of different values in the column.
Devising techniques to handle such encoding of columns is an interesting extension of this work.

7 Conclusion

In this paper, we presented the techniques and usability details of a novel system called KAFE
(Knowledge Aided Feature Engineering). It helps data scientists perform better predictive modeling
by utilizing massive amounts of structured knowledge on the web, such as knowledge graphs and web
tables. It helps enhance the feature space of a given supervised learning problem by automatically
identifying feature types, matching and joining them with external data through a novel index built
on web data called the Semantic Feature Index. We hope this work in progress demonstrates one
crucial step in the direction of utilizing the massive potential of the semantic web towards effective
application of machine learning.
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